Neuroscientists at the University of South Florida (USF) have become the first to definitively prove pressure in the eye is sufficient to cause and explain glaucoma. They come to this conclusion following the development of a method that permits continuous regulation of pressure without damaging the eye.
Researchers were able to manipulate pressure by implanting a tiny tube in the eye of an animal model and connecting the tube to a pressure source and pressure sensor. The pressure source infused fluid into the eye via a saline reservoir or a portable micropump built by the researchers. The pressure sensor took measurements every few seconds around the clock for up to 2 months, during which time the tube remained fixed in place even though the eye blinked and rotated, and the animal freely moved.
The study, published in Scientific Reports, found that raising the pressure of an otherwise healthy eye resulted in patterns of retinal and optic nerve damage like those seen in human glaucoma.
“The technique offers a significant advancement in glaucoma research,” said Chris Passaglia, PhD, professor of medical engineering at USF. “All studies to date have elevated pressure by blocking fluid outflow from the eye, whereas ours adds fluid as necessary to produce a desired pressure without damaging outflow pathways. Now researchers can have direct knowledge and control of eye pressure.”